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We describe a fast and accurate method to compute the pressure and equilibrium states for maps of the
interval T : �0,1�→ �0,1� with respect to potentials � : �0,1�→R. An approximate Ruelle-Perron-Frobenius
operator is constructed and the pressure read off as the logarithm of the leading eigenvalue of this operator. By
setting ��0, we recover the topological entropy. The conformal measure and the equilibrium state are com-
puted as eigenvectors. Our approach is extremely efficient and very simple to implement. Rigorous conver-
gence results are stated for piecewise expanding maps.
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I. BACKGROUND AND INTRODUCTION

Given a piecewise C1 interval map T : �0,1�→ �0,1�,
the Perron-Frobenius operator P :L1��0,1��→L1��0,1��,

Pf�x�ª�y�T−1x

f�y�

�T��y�� describes the action of T on ensembles

of initial conditions defined by densities f : �0,1�→R+. If a
density f is fixed by P, then f is a T-invariant density and for
ergodic T characterizes the long term distribution of orbits
starting in the support of f .

A well known generalization of this operator is the
Ruelle-Perron-Frobenius �RPF� operator �1,2� L� :R→R,
L�f�x�ª�y�T−1xe

��y�f�y� where R is a space of real or com-
plex valued functions on �0,1� with some form of regularity.
In suitable settings, thermodynamic quantities such as pres-
sure and equilibrium states can be read off from an RPF
operator. Nonanalyticity of the pressure and associated bifur-
cations of the equilibrium states are associated with phase
transitions, and these features of RPF operators have been
the subject of intense research since the 1980s �2–7� �see also
�1� and the references contained therein�. Recent progress by
Sarig �8�, Pesin and Zhang �9,10�, Yuri �11�, and others has
advanced the rigorous study of the statistical properties of
certain systems at points of phase transition �non-Gaussian
limit behaviors of ergodic averages, subexponential mixing
rates, and so on�. Our present study complements these de-
velopments by offering a simple, fast, and accurate numeri-
cal tool for the analysis of RPF operators and their associated
thermodynamical objects.

A probability measure �� is called an equilibrium state
�ES� �12� for the pair �T ,�� if it realizes the following maxi-
mum: P���=sup�h�+	�d� :�=� �T−1 ,���0,1��=1
=h��

+	�d��, where h� is the metric entropy of T and P��� is the
pressure.

If T is piecewise monotonic and forward transitive, and e�

is finite, of bounded variation, and suitably contractive along
orbits, then �see, for example, �1,13�� L� has a simple largest
positive eigenvalue ��=exp(P���), and a unique ES ��

=h���, where

L�h� = ��h�, �1�

L�
* �� = ����, �2�

and the action of the dual operator L�
* on a probability mea-

sure � satisfies �L�
* ���f�=��L��f�� for all bounded variation

f : �0,1�→R. The probability measure �� is known as a con-
formal measure. The eigenfunction h� is the density of the
ES �� with respect to the conformal measure ��. Thus �� is
absolutely continuous with respect to ��.

We describe a new method for numerically calculating the
topological pressure �with the topological entropy as a spe-
cial case�, the conformal measure, and the ES for a piecewise
monotonic interval map T : �0,1�→ �0,1� and a weight func-
tion exp���. Our approach has its origins in “Ulam’s
method” �14� which has been used successfully for the ap-
proximation of the physical invariant measures.

Several authors have treated the numerical approximation
of the topological entropy �15–19� and pressure �4� of inter-
val maps via transfer operator or matrix techniques. There
are many more papers dedicated to calculations for specific
maps, particularly those that display intermittency �e.g.,
�5–7��. The approaches �4,15,18,19� require the use of recur-
sive calculations to keep track of multiple inverse branches
or to approximate T by a Markov map. Notable among these
is the paper of Kovács and Tel �20� where a variant of Ul-
am’s method is used to estimate the eigenfunctions of certain
RPF operators. Their approach depends explicitly on the re-
cursive calculation of a Markov partition. Our approach does
not depend on such considerations; rather �i� single iterates
of T and �ii� evaluations of � are carried out at many sample
points and directly assembled into a matrix. For a relatively
general class of piecewise monotonic maps and potentials,
our method produces estimates of topological entropy and
pressure that converge to the exact values �21�. Furthermore,
we can rigorously approximate the density h� in the L1 norm.
In this paper we demonstrate numerically that our method is
extremely effective at estimating thermodynamical quantities
for very general maps including those that are nonhyperbolic
or display intermittent behavior. The key benefits of our ap-
proach are �i� the numerical implementation is simple, �ii� it
does not rely on any special structural properties of the dy-
namics, and �iii� rigorous convergence results continue to be
developed.
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II. DEVELOPMENT OF THE NUMERICAL METHOD

Partition �0,1� into n subintervals A1 , . . . ,An and define
the subspace �n=sp��A1

, . . . ,�An

, and the canonical projec-

tion �n :L1��0,1��→�n, �nfª�i=1
n 1

m�Ai�
	Ai

f dm, where m de-

notes Lebesgue measure on �0,1�. We consider the action of
L� on �n by defining a projected operator Ln,�ª�nL�. This
action is described by a matrix equation �21�:

�nL���
i=1

n

ai�Ai� = �
j=1

n ��
i=1

n

aiLn,�,ij��Aj
, �3�

where Ln,�,ij =
1

m�Aj�
	Ai�T−1Aj

e��y� �T��y� �dy. In practice, we

use an equipartition, setting Aiª� i−1
n , i

n
�, i=1, . . . ,n.

The entries of Ln,�,ij may be computed using some form of
numerical integration. In the one-dimensional experiments
reported here, we select a uniform sample of N points
xij,1 , . . . ,xij,N�Ai�T−1Aj and approximate each integral

	Ai�T−1Aj
e��y� �T��y� �dy by

m�Ai�T−1Aj�

N �k=1
N e��xij,k� �T��xij,k��.

Typically we have used 100	N	1000. A simpler method of
estimating L, especially useful in cases where there is no
easily defined inverse map, is to sample N points xi,1 , . . . ,xi,N
uniformly distributed in each set Ai, i=1, . . . ,n and use

Ln,�,ij 

�

k:xi,k�Ai,T�xi,k��Aj

e��xi,k��T��xi,k��

N
. �4�

If T is not uniformly expanding, one should take care when
applying Eq. �4� to use a sufficiently large value for N rela-
tive to the number of partition sets n.

Let �n,� denote the leading eigenvalue of Ln,� and �n,�,
rn,� be the corresponding left and right eigenvectors; that is,
�n,�Ln,�=�n,��n,� and Ln,�rn,�=�n,�rn,�. In the following
sections, we discuss the approximation of thermodynamical
quantities in the n→
 limit, where it is understood that
max1	i	nm�Ai�→0 as n→
.

A. Topological entropy and pressure

In the sequel we consider the well-studied family of po-
tentials �=−� log �T��, ��R. Throughout the paper log de-
notes the natural logarithm loge. To estimate the pressure
using our method we compute the leading eigenvalue of the
matrix

Ln,�,ij =
1

m�Aj�
�

Ai�T−1Aj

�T��y��1−�dy . �5�

If T is expanding, piecewise C2, and covering, Terhesiu and
Froyland �21� prove that Pn,�ª log �n,�→P��� as n→
. In
Sec. III we demonstrate that our approach is very accurate
for more general T. Note that when �=1, Eq. �5� simplifies
to the standard Ulam matrix approximating the Perron-
Frobenius operator, namely, Ln,1,ij =m�Ai�T−1Aj� /m�Aj�. In
the case where �=0, the topological entropy is estimated by
log��n,0� where �n,0 is the leading eigenvalue of

Ln,0,ij =
1

m�Aj�
�

Ai�T−1Aj

�T��y��dy . �6�

This turns out to be efficient, easy, and accurate, the latter
due in part to the use of derivative information.

B. Approximating the density of the ES, the conformal
measure, and the ES

Define hn,�=�i=1
n �n,�,i�Ai

. Then hn,� satisfies �nL�hn,�

=�n,�hn,�, and we expect that hn,�→h� as n→
. Terhesiu
and Froyland �21� prove that �hn,�−h��L1→0 as n→
 in the
setting of Sec. II A and numerical experiments demonstrate
remarkable accuracy for more general maps.

For the approximation of the conformal measure, we de-

fine a probability measure �n,� by �n,��A�ª�i=1
n m�A�Ai�

m�Ai�
rn,�,i,

where rn,�,i has been suitably normalized. We outline an ar-
gument that supports our contention that �n,� is a good ap-
proximation of the conformal measure ��. Consider
���nL�

* ����Ai�=���nL��Ai
�=��� j=1

n Ln,�,ij�Aj
�

=� j=1
n Ln,�,ij��Aj�. Thus ���nL�

* ��n,���Ai�=� j=1
n Ln,�,ij�n,��Aj�

=�n,��n,��Ai� and so for the sets A1 , . . . ,An, �n,� satisfies the
appropriate eigenvalue equation �2�. We demonstrate via nu-
merical experiments in Sec. III that �n,� well approximates
��; a proof of this fact in the setting of Sec. II A is work in
progress.

Finally, for the approximation of the ES, we define a

probability measure �n,� by �n,��A�ª�i=1
n m�A�Ai�

m�Ai�
�n,�,irn,�,i,

where �n,�,i and rn,�,i have been suitably normalized. Based
on the above arguments we contend that �n,�→�� as n
→
 and again demonstrate a high degree of accuracy in Sec.
III.

III. NUMERICAL EXPERIMENTS

It is well known that nonhyperbolic dynamical systems
can provide good models for phase transitions from a peri-
odic state to a chaotic one as the temperature is varied. Phase
transitions are described by nonanalytic behavior of the pres-
sure function �� P�−� log �T� � � �see, for instance,
�22,23,4,6,7��. We consider two examples: the logistic fam-
ily, whose dynamics are nonexpanding, and the Farey map,
whose indifferent fixed point at 0 leads to intermittency and
a phase transition.

A. Example 1: Logistic family

T�x� = rx�1 − x�, r � �0,4� .

As a first test of our method we set �=0 and calculated the
topological entropy htop at a range of parameter values. The
results are depicted in Fig. 1�a�. For comparison, we imple-
mented the Block et al. algorithm �16� to compute htop to an
accuracy of 10−4; the agreement with the results depicted in
Fig. 1�a� is very good; the error is displayed in Fig. 1�b�.
Note that for values of r�3.6 our generalized Ulam method
is accurate to within 10−3 once n=104. We remark that the
algorithm in �16� exploits the kneading invariant—a rela-
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tively sophisticated construction which exploits special prop-
erties of unimodal maps. By contrast, our method uses only
“one-step” dynamical information about the evolution of in-
dividual points, and knowledge of the derivative of the map.

Figure 2�a� depicts the results of a pressure computation
for the Ulam–von Neumann logistic map �parameter r=4�.
For �
−1, the ES at this parameter value is a � measure
concentrated on x=0, and for ��−1 is the absolutely con-
tinuous invariant measure �ACIM� with density
1/ ���x�1−x��, which is also a measure of maximal entropy.
Thus �3�

P�− � log�T��� = �− 2� log 2 � 
 − 1,

�1 − ��log 2 � � − 1

with a phase transition occurring at �=−1. This switching of
the ES is revealed by our calculations; the phase transition is
obvious in the plots in Fig. 2�a�.

Convergence for ��1 is slow, however, and we are pres-
ently seeking an explanation. Numerical tests at sample �
values ��=−0.5, 0, and 0.5� confirm that our method returns
estimates hn,� and �n,� that are very close to the theoretical
objects. Since the parameter r=4.0 is rather special from a
thermodynamic viewpoint �the ACIM is in fact a measure of
maximal entropy�, we also depict in Fig. 2�b� the results of a
pressure calculation for the parameter value r=3.84, where
the logistic map has a stable period-3 orbit. Here, we observe
three interesting phases. First of all, for sufficiently negative
� the � measure on the unstable fixed point at x=0 is an ES,

and the topological pressure is P�−� log �T� � �=−� log 3.84.
For ��1 the stable period-3 orbit at approximately
�0.1494,0.4880,0.9594
 �with Lyapunov exponent �per

−0.0444� determines the pressure: the ES is a sum of � mea-
sures on the period–3 orbit, and P�−� log �T� � �=−��per �us-
ing �24�, Theorem 4.1, and convexity of P�·��. This phase is
also clearly visible in Fig. 2�b�. In between these extremes
the pressure is determined by the dynamics of T on a repel-
ling Cantor set.

B. Example 2: Farey map

T�x� = � x
1−x if x 	 1/2,
1−x

x if x � 1/2.

Sarig �23� gives a convenient and general analysis of the
thermodynamic formalism for systems that can be modeled
by the renewal shift. By applying Sarig’s results to the Farey
map one obtains that there is a critical �c for which �i� when
�
�c, P�−� log �T� � � is analytic and there are unique
finite ESs; �ii� P�−� log �T� � � is nonanalytic at �=�c and
supports a continuous �but �-finite� invariant measure as
well as a singular equilibrium measure; �iii� for ���c,
P�−� log �T� � � is linear, and there are no continuous equilib-
rium measures �hence no continuous solutions to Eq. �2��.
Prellberg �6� showed that the leading eigenvalue ���� of the
RPF operator L� associated with T is real analytic for all
�
1 and all ��1 with a nonanalyticity at �=1. He further
showed that log������ can be identified with P�−� log �T� � �
and that the pressure function �� P�−� log �T� � � therefore
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FIG. 1. �Color online� �a� Topological entropy for the logistic
map computed as described in Sec. II A, n=5000 bins, N=100 test
points. �b� Discrepancies in entropy calculations for the logistic
map �n=1000 and n=5000�; �n,0 is leading eigenvalue of Ln,0, htop

computed to 10−4 using the Block et al. algorithm �16�.
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FIG. 2. �Color online� �a� Pressure Pn,−� log�T�� computed by Ul-
am’s method for logistic map with r=4, n=1000 �solid�, and n
=10000 �dot-dash�; exact result displayed as a dotted line. �b� Pres-
sure Pn,−� log�T�� computed by Ulam’s method for logistic map with
r=3.84, n=1000 �dot-dash�, and n=10000 �solid� indistinguishable.
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encounters a nonanalyticity �corresponding to a phase tran-
sition� at �=1. Thus �c=1 and the thermodynamic phases of
the Farey map can be studied by transfer operator methods.
Our generalized Ulam method confirms these predictions
with a very high precision: Figure 3�a� shows the numeri-
cally computed pressure function P�−� log �T� � � and its de-
rivative; the phase transition at �=1 is clearly visible, show-
ing up as a “kink” in the graph of P. We summarize our
findings in the three temperature regimes as follows.

�
1. The ES is a continuous probability measure �6,23�
and P�−� log �T� � � is real analytic. In fact, when �=−m /2
�0	m�Z�, the recurrence relation �1� has polynomial solu-
tions �4�, and the value of P��m /2�log �T� � � can be exactly
calculated as the logarithm of the leading eigenvalue of an
�m+1�� �m+1� matrix. Figures 3�a� and 3�b� show excellent
agreement between these values and the calculations based
on our extended Ulam’s method �n=1000, N=100�; our es-
timates are accurate to within 2�10−4 for m=0,1 , . . . ,20.
As discussed in Sec. II B, our method also provides approxi-
mate conformal measures and ESs for arbitrary �. Figure
4�a� displays the results of a sample calculation with �=0:
the measure is represented as a histogram on n=5000 equally
spaced bins. We have chosen �=0 as the ES at �=0 is a
measure of maximal entropy, and the density h0�1; thus
�0=�0. Furthermore, by exploiting the conjugacy with the
two-shift we can obtain independent numerical estimates of
the ES �0 against which we can compare our Ulam estimate.

The agreement is excellent: using the Hutchinson metric, the
weak-* discrepancy between �0 and �5000,0 �both repre-
sented as 5000 bin histograms� was 1.07�10−5±2�10−4.
The dominant error of 2�10−4 is due to the representation as
a 5000 bin histogram; the error in mass assigned to each bin
is extremely small.

�=1. At �=1 there co-exist a �-finite invariant measure
� �with d�

dx = 1
x � and �0—the point mass on the indifferent

fixed point at 0. Interestingly, Ulam’s method detects �
rather than �0. In Fig. 4�b� we depict a log-log plot of the
Ulam approximate ES �n=1000�; a slope of almost exactly
−1 indicates a density consistent with 1/x. We believe that in
this case �0 is not selected by the extended Ulam’s method
because of the instability of �0 to stochastic perturbations;
the fixed point at x=0 is weakly unstable and once perturbed
from 0, orbits of the dynamical system are distributed like
1/x.

��1. In this regime, the continuous invariant measures
are no longer ESs �23�, and P�−� log �T� � �=0. Numerical
experiments with �=1.1 suggest that the “approximate ES”
�n,� approaches �0 as n→
.

IV. DISCUSSION AND CONCLUSIONS

We have described a simple, fast, and accurate numerical
method for estimating important thermodynamic quantities
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associated with one-dimensional dynamical systems. Using
the logistic and Farey maps as case studies we have shown
that the numerical method is a straightforward and
accurate way to approximate the pressure, detect phase
transitions, and estimate ESs. Rigorous convergence results

for the pressure and densities of ESs exist for a broad
class of expanding maps �21�. Proofs of the convergence
of the approximate ESs �n,� to �� and extensions to
nonuniformly expanding maps are currently being investi-
gated.
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